A study on leakage current and electrical properties of oleic acid-coated cobalt-doped Mn-Zn ferrite nanocrystalline powders
نویسندگان
چکیده
Background: Mn-Zn ferrites have drawn a continuously an increasing interest because of their potential applications as multifunctional devices. These materials simultaneously exhibit ferroelectricity and ferromagnetism. The dielectric and leakage current properties of Cobalt substituted Mn-Zn ferrites coated with oleic acid were not reported. Methods: This paper presents the synthesis, electrical, and leakage properties of nanoparticles of cobalt-doped MnZn ferrite [CoxMnyZnyFe2O4 (x = 0.1, 0.5, and 0.9 and y = 0.45, 0.25, and 0.05)] coated with oleic acid and prepared by chemical co-precipitation method. The crystal structure was determined by X-ray diffraction (XRD), the effect of strain on the electronic structure was analyzed using Williamson-Hall plot. Complex impedance spectroscopic analysis was carried out, and the impedance plots show the resistive and reactive parts of the impedance. Frequency dependence on AC conductivity was investigated for all the compositions, and leakage current properties were also studied. Results: The nanoparticles were found to have an average size of 13.62 nm. The average crystallite size (DaveXR) of the precipitated particles found to decrease from 15.22 to 12.65 nm with increasing cobalt substitution. The presence of two semicircular arcs at the lower and higher frequency regions indicates the grain boundary conduction and grain conduction at room temperature. Leakage current density of the order of 10 A/cm (at field strength of 0.02 kV/cm) was observed for all compositions. Conclusion: The variation of the strain values from negative to positive indicates that the strain changes from compression to tensile. The dielectric permittivity was found to decrease from 10to 10 with increase in frequency. The semicircle in the higher frequency region is attributed to the grain conduction of the materials, and the semicircle in the lower frequency region is due to the grain boundary conduction. Both the grain and grain boundary are found to be active at room temperature. AC conductivity is found to be compositional dependent.
منابع مشابه
An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملA Facile Microwave Method to Produce High Crystalline CoFe2O4 Nano-particles
CoFe2O4 have been synthesized via a surfactant assisted gel microwave route with a molar ratio of Fe/Co= 2 and oleic acid (OA) was used as a surfactant. Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to consider the structural and morphological properties of CoFe2O4 nano-particles. Results demonstrated that oleic acid is ...
متن کاملA Facile Microwave Method to Produce High Crystalline CoFe2O4 Nano-particles
CoFe2O4 have been synthesized via a surfactant assisted gel microwave route with a molar ratio of Fe/Co= 2 and oleic acid (OA) was used as a surfactant. Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to consider the structural and morphological properties of CoFe2O4 nano-particles. Results demonstrated that oleic acid is ...
متن کاملSynthesis and Surfactant Effect on Structural Analysis of Nickel Doped Cobalt Ferrite Nanoparticles by C-precipitation Method
Nanoparticles of nickel substituted cobalt ferrite (Nix Co1-xFe2 O4 : 0£ X£ 1) have been synthesized by co-precipitation method. Triton x-100 and oleic acid as surfactants were used. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak were found 17 and 21nm. Their morphology structure have been determined by scanning electron microscop...
متن کامل